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1 Gradient Descent for Beta Smooth Function

Up to now, we have learned the gradient descent algorithm with linear search. The advantage of the algorithm
is the simple interpretation. However, the linear search step involved in gradient descent algorithms makes
more computational effort to find a proper step size. This also leads to difficulties in theoretical analysis
(See Page 222).

Q: Whether exists a method to provide a proper step size s which can guarantee the convergence of the
gradient descent algorithm without line search.

The answer is Yes! for the specific objective function.

Definition 1 f : Rn → R is a β-smooth function if

• ∇f exists which is continuous.

• For any x1,x2 ∈ dom(f),
‖∇f(x1)−∇f(x2)‖2 ≤ β‖x1 − x2‖2. (1)

This means ∇f is a β-Lipshitz continuous function.

Let us show some examples:

• f(x) = 〈b, Ax〉 is a 0-smooth function.

• f(x) = 1
2‖b−Ax‖2 is a λmax(A>A)-smooth function.

Lemma 1 Let f be a β-smooth function, then for any x and y ∈ dom(f), then

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
β

2
‖y − x‖2. (2)

Proof 1 Denote g(t) = f(x + t(y − x)), then g(0) = f(x) and g(1) = f(y). Then we have

g(1)− g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

〈∇f(x + t(y − x)),y − x〉dt. (3)

Thus,

f(y)− f(x)− 〈∇f(x),y − x〉 =

∫ 1

0

〈∇f(x + t(y − x))−∇f(x),y − x〉dt

≤
∫ 1

0

‖∇f(x + t(y − x))−∇f(x)‖‖y − x‖dt

≤
∫ 1

0

tβ‖y − x‖2dt =
β

2
‖y − x‖2,

where the first inequality due to Cahuchy inequality and the second inequality based on the definition of
β-smooth function.
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This Lemma tells us that if a function f is β-smooth, we could build a quadratic upper model at every point
in the domain of f , namely, for any x ∈ dom(f) we can construct a function

mx(y) = f(x) + 〈∇f(x),y − x〉+
β

2
‖y − x‖2 (4)

such that

• mx(x) = f(x),

• f(y) ≤ mx(y) for any y ∈ dom(f).

Lemma 2 f is β-smooth and ∇2f exists if and only if ‖∇2f‖2 ≤ β.

Hint: Consider the Taylor expansion of f(y) at x is

f(y) = f(x) + 〈∇2f(x),y − x〉+
1

2
(y − x)>∇f(x + t(y − x))(y − x),

where 0 ≤ t ≤ 1.

Next, let us illustrate a gradient descent for β-smooth function in Algorithm 1. In the algorithm, it is notable
that the step size is st = 1

β for all t.

Algorithm 1 Gradient Descent for β-smooth Function

1: Input: Given a initial starting point x0 ∈ dom(f), a tolerance ε and t = 0
2: while ‖∇f(xt)‖ ≥ ε do
3: xt+1 = xt − 1

β
∇f(xt) and t := t+ 1.

4: end while
5: Output: xT , where T is the last step index.

Example 1 Let us consider the least squares problem again. That is

min
x

1

2
‖Ax− b‖2 := f(x).

We can compute that

• ∇f(x) = A>(Ax− b),

• β = λmax(A>A),

• iterative step:

xt+1 = xt − 1

λmax(A>A)
∇f(xt) (5)

= xt − 1

λmax(A>A)
A>(Axt − b) (6)

=

(
I − A>A

λmax(A>A)

)
xt +

A>b

λmax(A>A)
. (7)

This is an iterative algorithm and easy for implementation.

Q: How to prove the algorithm converges???
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Theorem 1 Suppose that {xt}∞t=0 is generated by Algorithm 1 and the given tolerance ε > 0, if T ≥
2β(f(x0)−f∗)

ε2 , then
min

t=0,1,...,T−1
‖∇f(xt)‖ ≤ ε. (8)

Proof 2 Recall that mt(x) = f(xt) + 〈∇f(xt),x − xt〉 + β
2 ‖x − xt‖2 ≥ f(x) is a quadratic function for

any x ∈ dom(f). And its minimizer is the solution of ∇mt(x) = ∇f(xt) + β(xt − x) = 0. Thus, x∗ =
xt − 1

β∇f(xt) = xt+1, namely xt+1 is the global minimum of mt(x). Then

f(xt+1) ≤ mt(x
t+1) = f(xt)− 1

2β
‖∇f(xt)‖2 ≤ mt(x

t) = f(xt). (9)

So, we have that f(xt+1)− f(xt) ≤ − 1
2β ‖∇f(xt)‖2 for all t. Inaddtion,

f(xT )− f(x0) =

T−1∑
t=0

(f(xt+1)− f(xt)) ≤ − 1

2β

T−1∑
t=0

‖∇f(xt)‖2. (10)

Therefore,

T

2β
min

t=0,...,T−1
‖∇f(xt)‖2 ≤ 1

2β

T−1∑
t=0

‖∇f(xt)‖2 ≤ f(x0)− f(xT ) ≤ f(x0)− f∗. (11)

Based on this fact, we have

min
t=0,...,T−1

‖∇f(xt)‖2 ≤
√

2β(f(x0)− f∗)
T

. (12)

If T ≥ 2β(f(x0)−f∗)
ε2 , then

min
t=0,1,...,T−1

‖∇f(xt)‖ ≤ ε. (13)

Remark 1 Tow facts should be discussed.

• Let us discuss the convergence property of {xt}∞t=1 that generated by Algorithm 1. Assume that f∗

exists, then based on the proof of Theorem 1, we have

1

2β

∞∑
t=0

‖∇f(xt)‖2 ≤ f(x0)− f∗. (14)

This implies {‖∇f(xt)‖}∞t=0 is a convergence sequence, and lim
t→∞

‖∇f(xt)‖ = 0. So, if xt → x∗, then

x∗ is the stationary point of f .

• Local Minimum? Global Minimum???

• Let us discuss the convergence speed. Suppose that, take ε = 10−2, then according to Theorem 1, it
should be T ≥ 104. If we take ε = 10−3, then T ≥ 106.

• Toooooö slow!!!! Maybe T = O(1/ε) or T = O(1/
√
ε) is better. Next subsection will show that the

convex and β-smooth objective function can achieve the hopeful speed.
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